
X-Stack: Auto-tuning for Performance and Productivity
on Extreme-scale Computations

Samuel Williams, Leonid Oliker, John Gilbert, Stephane Ethier, Kamesh Madduri, Aydin Buluc

Automatic Performance Tuning

contact: Samuel Williams

Automatic Performance Tuning (auto-tuning) is a proven
(ATLAS, FFTW, SPIRAL, OSKI), empirical, feedback-driven,
optimization technique designed to address many of the
performance optimization challenges seen on multicore
processors.

The large performance gains attained via auto-tuning are only
possible by exploiting high-level knowledge about the underlying
numerical method. This knowledge allows transformations to
data structure and algorithmic parameters that are beyond the
reach of compilers. This motivates encapsulation of functionality
into large auto-tuned blocks that subsume control of data
structure, algorithmic parameters, and possibly parallelism.

Abstract
In the 1990's, advances in CMOS technology, cooling, and
superscalar out-of-order architectures allowed for an
unprecedented acceleration in computing power beyond Moore's
law. Unfortunately, as continued exponential performance gains
through these technologies are no longer possible, the
computing industry has embraced multicore as a means of
providing ever-increasing peak computing performance. As there
is no consensus on multicore architecture, a plethora of efficient,
high-performance multicore architectures have emerged.
However, the detailed architectural knowledge required to fully
exploit these architectures is so prohibitively high that novel
programming and optimization tools are required to ensure
computational scientists within the DOE Office of Science may
reap the benefits of advances in commodity computing
technology.

Recently, automatic performance tuning, or auto-tuning,
emerged as a technology that provides performance portability
of a few key computational kernels from one generation of
architecture to the next. Our work on auto-tuning memory-
intensive kernels boosted performance by 25x over serial
implementations and better than 4x over good parallel
implementations, where our optimization and auto-tuning efforts
on Cell improved performance by as much as 130x. Our work on
graph analytic kernels on GPUs produced speedups of as much
as 400x.

Building on these advances, our proposed research agenda will
address auto-tuning's two principal limitations: an interface ill-
suited to the forthcoming hybrid SPMD programming model; and
its scope limited to fixed-function numerical routines. To that end,
we will build a series of broadly-applicable, auto-tuned efficiency
layer components. To address auto-tuning's first limitation, we
will employ both SPMD computational collectives and
concurrent runtimes. These will hide the complexity of both
hybrid communication and multi- and manycore optimization. As
such, this model will allow programmers to gracefully transition
from the existing flat MPI programming model to a hybrid
programming model capable of exploiting the full potential of
multicore. Moreover, even if exascale architectures depart
dramatically from either of these camps, collectives and runtimes
provide a portable abstraction layer that will hide disruptive
technological shifts. To address the second limitation, we will
develop a runtime for concurrent operations on discrete data
structures (deques, sets, and priority queues) and extend the
sparse collectives and reduction runtimes to operate on non-
numeric data via alternate semirings. Finally, to demonstrate the
utility of our method, we will integrate the resultant auto-tuned
components into compact applications of interest to the
Department of Energy and evaluate them at the largest
concurrencies possible.

The development of this technology will play an essential role in
the exploitation of multi- and manycore architectures by
scientists within the DOE Office of Science over the next
decade.

1

Auto-tuners can be:
•  Written for specific numerical methods or applications:
 FFTW, BLAS (ATLAS, MKL), SpMV (OSKI), CA GMRES,
 Lattice Boltzmann MHD (LBMHD), Fast Multipole Method (FMM)

•  Generated from a Domain Specific Language: SPIRAL, stencils
•  Generated from parsing C/FORTRAN code.
•  Directly incorporated into a compiler.

Auto-tuners Compilers Optimizations
✔ Code/Loop
✗ Data Structures

limited Parallelism

Algorithmic Parameters
runtime,
empirical

offline,
heuristics Implementation Selection

Synchronization

✔
✔
✔

✔ ✗
✗ ✔ MPI Communication
✗ ✔

Auto-tuners can be reused across the breadth and evolution of
multicore processors. For example, our SpMV, Stencil, and
LBMHD auto-tuners were developed on an older generation of
dual-core processors. Nevertheless, they continue to deliver
substantial speedups on the latest generation of processors
(including Magny Cours, Nehalem-EX, and BlueGene/P).

!"#$

%&"'$

("%$

)"*$
("($

&"!$

("!$

%&"%$

*+$

,+$

%*+$

%,+$

(*+$

-
.
/
0
$

1
2
$3
/
4
5
-
$

6
0
/
$-
78
9
:;
<$

6
=
/
$-
78
9
:;
<$

3
>
1
$?
.
@
AB
;C
$

3
>
1
$?
:B
D
EF
8
;C
$

G
H6
/
/
$?
I@
<<
C$

JK
/
L
=
$2
.
.
"$

!"##$%"&'()&*%+,-+%.(./&

SWWilliams@lbl.gov https://hpcrd.lbl.gov/~swwilliams

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

4,0 5,0 6,0 7,0

4,1 5,1 6,1 7,1

4,2 5,2 6,2 7,2

4,3 5,3 6,3 7,3

c
o
re

 r
a
n
k

node rank

Communication via MPI or

load/store to shared memory

Communication via MPI

or put/get (GASNet)

P
ri
m

a
ry

 F
o
c
u
s

S
e
c
o
n
d
a
ry

loads/stores to

private memory

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

4,0 5,0 6,0 7,0

4,1 5,1 6,1 7,1

4,2 5,2 6,2 7,2

4,3 5,3 6,3 7,3

c
o
re

 r
a
n
k

node rank

intra-node collective inter-node collective

inter- and intra-node collective

serial library call

X-Stack Research Thrusts

X-Stack Motivation

Interaction with Co-Design and SciDAC Centers

Attaining high performance on either a conventional multicore
processor (Opteron, BGP, etc…) or novel manycore accelerator
(GPU) is often challenging and unproductive as it requires hybrid
programming models, detailed architectural knowledge, and a
fundamental understanding of the applications in question.

Moreover, we are faced with a conundrum: auto-tuning and
threading are often essential for kernel performance, but
threading an application can dramatically degrade application
performance. Optimizing hybrid applications is as much about
accelerating the performance of the threaded routines as it is
about minimizing the slowdown (compared to flat MPI) in the
non-threaded routines.

Furthermore, the existing set of library-based auto-tuners force
programmers to conform to fixed functionality and a fixed
interface. This makes integration and broad acceptance
challenging. For example, we observe that the same
optimizations are applicable in sparse linear algebra regardless
of data type (real, complex, integers, or bits) or application
domain (PDEs, graph analytics). Similarly, we observe that in the
context of particle-mesh methods, although the optimal
implementation may be unique to a particular dataset-
architecture-application tuple, a generalized optimization design
space can capture all of them.

Ultimately, when constructing auto-tuners, we end up solving the
same core challenges over and over: management of data
movement, data synchronization, and data replication. We
believe much of this functionality should be extracted,
generalized, auto-tuned, encapsulated so that the details
are hidden from application scientists, and so that it may be
easily reused.

 Construction of a series of auto-tuned reduction runtimes that
manage data locality, replication, and synchronization at both
the intra- and inter-node levels. Such tools will separate the
common challenges we’ve observed in optimizing Particle-in-
Cell (PIC) codes from the core underlying method. Moreover,
the runtime can be made sufficiently general (alternate
semirings) that it can be used in other application fields.

 Construction of a series of auto-tuned routines for discrete
data structures (sets, deques, priority queues, etc…) at both
the intra- and inter-node levels. Such data structures are
increasingly used to implement complex, yet efficient
numerical routines. We believe such routines will not only
enable further gains in performance on existing applications,
but also serve emerging areas of interest to the Office of
Science.

 Integration of the above core routines into generalized
(alternate semirings) and auto-tuned sparse linear algebra
primitives (SpMV, SpGEMM). Such multicore-optimized tools
are clearly critical to scientific applications.

 Integration and evaluation (performance & productivity) of the
above into applications in the realms of PIC and Immersed
Boundary Method simulations and graph analytics.

Auto-tuners are a productivity and risk mitigation strategy for
both the Co-Design and SciDAC centers. Given the uncertainty
in what exascale (or even 100PF) architectures will look like, it is
improbable that today’s (hand) optimized implementations will
run well on such machines. However, an auto-tuner can mitigate
this uncertainty by exploring a software design space on each
successive generation of processors and adapting to them.

Moreover, as software can adapt to hardware, architects do not
need to overprovision their processor designs to suit the needs
of legacy applications and implementations. The result is an
improvement in power efficiency.

Interaction is key as it ensures our implementations are
sufficiently broad and we have the detailed application
knowledge to implement the most complex optimizations.

2

Encapsulation and Abstraction
Directly exploiting shared memory via loads and stores instead
of passing messages is essential in attaining high performance
and scalability on many applications. Moreover, due to the
complexities of their communication patterns, some applications
struggle with MPI implementations but are easily expressed in
PGAS models. We will adopt a hierarchy of memories and map
them to a 2D rank system.

We will extend the well understood concept of communication
collectives to perform auto-tuned numerical methods. We
differentiate auto-tuned library calls and computational
collectives by the degree in which they may collaborate.

Using shared memory extensions, we will construct both a
tuning and a computational collective for each primitive to allow
black boxing of auto-tuning and easy integration into existing
MPI applications.

(a)

join collective

(b)

process0 process1 process2 process3

node0 node1

gather via
MPI

local
SpMV

local
SpMV

local
SpMV

local
SpMV

gather via
MPI

gather via
MPI

gather via
MPI

lo
o
p
 o

n
 p

e
rf

o
rm

a
n
c
e

c
ri
ti
c
a
l
s
e
c
ti
o
n

tune
SpMV

tune
SpMV

tune
SpMV

tune
SpMV

SpMV Tuning Collective

SpMV Execution Collective

lo
o
p
 o

n
 p

e
rf

o
rm

a
n
c
e

c
ri
ti
c
a
l
s
e
c
ti
o
n

process0 process1 process2 process3

node0 node1

contact: Samuel Williams SWWilliams@lbl.gov https://hpcrd.lbl.gov/~swwilliams

